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Abstract-Previously derived results for the mentioned canonical load cases for pretwisted rectangular plates
(or shallow helicoidal shells) of rectangular cross section are generalized so as to include arbitrarily prescribed
cross wise thickness variations. The present method of derivation is simpler than the earlier one in terms of
Marguerre's equations for transverse deflection and Airy stress function. and consists in applying a semi-inverse
solution procedure to the system of equilibrium and compatibility equations of shallow shell theory. A particular
case of the results of this paper concerns the problem of pure bending ofa pretwisted plate with elliptical thickness
variation. The results for this case coincide with recent results obtained by Goodier and Griffin through use of
three-dimensional elasticity theory.

INTRODUCTION

SOME years ago, Maunder and one of the present authors [4] considered the problem of
pure bending of pretwisted bars of narrow rectangular cross section as a problem of the
theory of shallow helicoidal shells of uniform thickness. The principal results of this study
concerned the effect of pretwist on the magnitudes of the bending stress and of the center
line curvature, in comparison with the magnitude of these quantities according to "ele
mentary beam theory". It was found that for beam sections thin enough to justify the use of
thin-shell theory the effect of pretwist can be significant-20 per cent or more.

Later on the second named author undertook an analogous investigation ofthe problem
of St. Venant flexure [6], for which the effect of pretwist comes out to be of still greater
significance than for the problem of pure bending.

A recent study by Goodier and Griffin is concerned with the problem of pure bending
of pretwisted beams by means of an expansion procedure in powers of a (small) pretwist
parameter for the equations of three-dimensional elasticity theory [2]. The principal con
clusion of this work is that for the effect of pretwist to be numerically significant, the cross
section of the beam must be "thin". Goodier and Griffin present results for a beam with
thin elliptical cross section and state that the results for this case are "comparable" with
the results of Maunder and Reissner for the rectangular cross section case.

t Preparation of this paper has been supported by the Office of Naval Research. Department of the Navy.
Washington. D.C.

625



626 E. REISSNER and F. Y. M. WAN

A study of the analysis by Goodier and Griffin indicates, in conformity with the mtuitlve
feeling which led to the work in [4], that the effect of pretwist is significant for just that
range of parameter values for which application of the theory of thin shallow shells (or
"pretwisted plates") is appropriate. As an analysis of the problem by means of the theory of
shallow helicoidal shells is a great deal simpler than the corresponding analysis by means of
the equations of three-dimensional elasticity theory we extend in what follows the pre
viously undertaken shallow-shell-theoretical approach for uniform pretwisted plates to the
problems of stretching, twisting, bending and flexure of plates with thickness and material
properties variable in crosswise direction.

Insofar as the derivation of suitable solutions of the equations for shallow helicoidal
shells is concerned, we find it convenient here not to start with the usual two simultaneous
shallow-shell differential equations for the transverse deflection wand an Airy stress
function F as in our earlier work on shells with uniform properties [4, 6J, but rather to
subject directly to a semi-invers~ procedure of solution the system of equilibrium. com
patibility and constitutivity differential equations which have recently been stated in [5J.

Among the explicit results which are obtained in the following we mention, in particular,
formulas for bending stress and centerline curvature in pretwisted plates with thickness
varying elliptically in crosswise direction. which are identical with the formulas given by
Goodier and Griffin on the basis of their asymptotic expansion procedure for the three
dimensional problem.

FORMULAnON OF THE PROBLEM

We .consider a shallow shell with middle surface equation

:: = fJxy ( II

for Ixi s a and Lvi s b. and take the differential equations of shallow shell theory in the
form stated in [5J, specialized by the assumption of absent surface forces. moment stress
couples and transverse shear deformations. We then have as equations of equilibrium

Nxx •x + N yx •y = o. N xy .x + N yy .• = O.

13)

A1xx.x + A1yx.y = Qx. l'vt xy.X + ,VIYl'.y = Qy.

where IVxl' = IV IX' and as equations of compatibility

(6)

wherexxy = K yx '

We stipulate that the edges y = ± b are free of traction, that is. we prescribe the boundary
conditions

r = ±b: N"y = N"x = Q" + Iv! IX.X = ,'v! n' = 0,
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In prescribing boundary conditions for the edges x = ± a. we assume that they are
acted upon by given forces and moments and we consider separately:

(i) The case of stretching, twisting and pure bending for which the boundary conditions
are

rb

Nxxdy=N.
~ -b

(9)

f b (Qx+Mxy.y+::.,xNxx+z,JVxy)dy-[2MxJ~b = O.
-b

(10)

x = ±a

f/NxxdY = Ms' fb (Mxx+zNxx)dy = M p, (11)

f b (Qx+Mxy,y+=,xNxx+z,-,,Nxy)ydy-[2yMxJ~b = Mr. (12)
-b

(ii) The case of flexure due to equal and opposite forces in the directions of y and z.
for which the boundary conditions are

f
b Nxxdy = O. fb Nxydy = Q" (13)
-b -b

f b (Qx+Mxy,y+=,xNxx+z,-,.Nx...ld.\'-[2MxyJ~b = Qp, (14)
-b

x = ±a

f
b yNxxdy = ±Qsa. fb (Mxx+zNxx)dy = ±Qpa. (15)
-b -b

r Lv(Qx+ Mxy,y+z,xN xx+ z,yN xy)-zNx...J dy- [2yMx...J~b = 0 (16)
• -b

The subscripts sand p indicate sheet and plate action respectively.
The foregoing system of differential equations and boundary conditions is supplemented

by constitutive equations which are here taken in the form

CCXY = Cc yX = (1 + v.dNxy'

!v!xx = D(:v.xx+VMY-yy). M yy = D(xyy+vMy-xx),

M xy = M)'x = (1-v M)Dxx)"

In these the coefficients C, D, VN and "M are given functions of y.

STRETCHING, TWISTING AND PURE BENDING

(17)

(18)

Guided by the form of the boundary conditions (9H12), we attempt a solution of the
problem through a semi-inverse procedure, assuming at the outset a state of stress with the
properties that

1. N XY' N )'y' Q)., M yy vanish throughout..
2. N xx' Qx. M xy = M)'x are independent of x.
3. M xx = MoCv)+xMt(y).
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With the above assumptions, all but one ofthe equilibrium equations (2H4) are satisfied
automatically, leaving only the relation

11 y)

with differentiation with respect to y from now on indicated by dots. Furthermore, the
boundary conditions (8) for Y = ±b are satisfied automatically.

Introduction of assumptions (I H3) into the constitutive equations (17) and (181 reduces
these to the form

(20)

(21)
(1- vM)Dxxy = (1- v\[)Dx yx = Mxy(Y)·

Introduction of (20) and (21) into the compatibility equations (5) and (7) leaves the
relations

(22)

1241

and, on the basis of (6),

125)

We now have from (23)

,\o1oCrl = Cl(1-V~)D, (261

where C1 and C2 are constants of integration, and from (22)

M x }' = - (C 2J>H dY+(3)(1- v~f)D.

Introduction of (27) into (25) gives

(27)

(28)Nu = {2/{C2 s: s: s: V\fdYdYdy+tC3y2]+C4Y+CS}c.

Combination of (26)-(28) with (20) and (21) gives expressions for all components
of strains in terms of the given function C. D, VM and v"', and of the five constants of
integration C j •

Corresponding expressions for all non-vanishing stress resultants and couples are given
by (27) and (28), together with

(29)
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(30)Qx = C{(1-I'~)D-{(l-VM)D J:'VMdY}']-C3[(l-VM)DT

It remains to satisfy the boundary condition (9H12) for x = ±a. Of these, one is
satisfied automatically and the remaining five become five simultaneous equations for the
five constants of integration ci . In stating these five equations, we shall for simplicity's
sake assume r~f = const. We then have, from (9)

(31)

Equation (10) can be shown to be implied by the second relation in both (9) and 0 I) in con
junction with (9). The first equation in (1 I) becomes

From the second equation in ('11) follow two relations,

(32)

C2(1-V~) r' D dy = - PM•.
~ -b

(33a, b)

(34)

Finally, (2) gives

C{~PZVM f/SCdy+n-VM)(1+3VM) f/DdY]

+c{p
zf/4C dy+2(l-vM)fb D dY]

+c4 Pfb lC dy+csP fb ylC dy = Mr·

lt is apparent that with c1 and Cz directly given by (33), equations (31), (32) and (34)
become three simultaneous equations for the determination ofc3' C4 and cs' with coefficients
depending on the section property integrals f~ ymc dy for m = 0,1,2,3,4,5 and
S~/> ymD dy, for m = 0,1. . .

In terms of these constants, we have M xx as in (29), while from (27) and (28)

M x }' = -(C3+ CZVMy)(l-VM)D,

N xx = (cs +c4 y+ c3Pyz +tC2 PVMy3)C

Furthermore, in accordance with (20), (21), (26), (35) and (36),

while Gyy ' c;x}" Gyx and xn are as in (20) and (21).

(35)

(36)

(37)

(38)
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Having (37), (38), (20) and (21), we may readily calculate displacements in accordance
with the formulas

(39)
\\-',xx = -xxx,

THE SYMMETRIC CROSS SECTION CASE

(40jr yD dy = O.
• -b

The foregoing results are simplified considerably for the case that the cross section
property functions C and D are even in y so that

Jb (y, y3 , y5)C dy = 0,
-b

We then obtain from (32), with the help of (33b)

A1s [ 1 V'dP2 f'-b y
4
C dY]

('4 = fb_by2Cdy 1+31_v~( r_bDdy
141 )

and from (31) and (34)

(42)

(43)

The following quantities are of particular interest:

Axial extension and twist due to applied axial torque i'vl, and axial force ;V

From equations (37) and (38) follows

(441

where C5 and C3 are given by (43) and (42), As far as the authors know, the results of equation
(44) have not previously been given, except for the case of a rectangular cross section [3J,
and for the case N = 0 [1]. In accordance with (20) and (22), we have further that au =

(Cjh)exx , uniform across the thickness, and (jxy = ±[6(1-I'M)D/h2
]xxy for the two face

surfaces of the shell.

Pure plate bending due to moment M p

Setting M s = 0, M, = 0 and N = 0, we have

(451
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there being no effect of pretwist to the degree of approximation implied by shallow shell
theory, as previously found for the case of a rectangular cross section [4].

Pure sheet bending due to moment M s

Setting M p = 0, M, = 0 and N = 0, we have

(46)

(47)

For this problem we are interested, in particular, in the values of the stress (T~x for y = ± b.
given by

(48)

and in the values of the curvature component k, of the deflected centerline of the shell, given
by (u,. - z.Jw).xx for y = O. Use of equations (39) leads to the relation

(49)

in accordance with what has been stated in [4]. From (46) and (47) follows as expression for
k

J
in terms of the coefficients C2 and C4

(50)

The term quadratic in x is the same as that which follows from elementary beam theory if
account is taken of the rotation of the principal axes of the cross section. The term with C4

incorporates the Poisson's ratio effect of pretwist, which is not given by beam theory and
which has earlier been obtained for the special case of a rectangular cross section [4].

Equations (48) and (50) contain the results which are of particular concern here. We
may write them more explicitly as

(51)

where

±Ms b3 C
(To = hb2 f~b ic dy'

Ms

ko = - f~b y2C dy'

(52)

(53)

To see the effect of the cross section shape in the problem of pure sheet bending, we
consider, with

(54)
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the cases of rectangular, elliptical, lenticular and diamond shaped cross sections. The
following results are obtained:

h 8 V\{E.v{32b-+ 4 V\1E'I{32b4
- = I: P~ = 15 EM h6

Pk =
E\{h6ho 5

h _ / ( ,\,2) . 2 V~(EN{32b4 2 vM EN{3J.b4

I;; - V 1- b2 ' P~ = ~
EM h6

Pk = -
E\1h6j 3

1551
h 1'2 7 V\{E",{32b4 I VH E.v{32b4

- l-b2: p" = 6 E Hh6
Pk = :;

EM h6ho

h Iyl 4- vME N{32b 4 8 v\1EN{32b 4

-= 1--' p" = :5 E..,h6 Pk =15 E Mh6ho b '

When EM = E'I the results for the case h/ho = 1 coincide with those given in [4J and the
results for the case h/ho = (I - y2;b 2 yt coincide with those derived by Goodier and Griffin
[2J.

ST. VENANT FLEXURE DUE TO TRANSVERSE END FORCES

Since there is no coupling between the problems of St. Venant flexure due to plate
forces ± Qp and sheet forces ± Q.. we consider the two problems separately.

The form of the boundary conditions (13H16) with Qs = 0 suggests that we assume at
the outset the same state of str~ss as that of the section dealing with stretching, twisting and
pure bending, with Mo(y) = O. With VM = const., the previous reduction gives the following
expressions for the nonvanishing stress resultants and couples:

N u = C{!C2vu{3y3+C3{3y2+C4Y+CSI.

156)

A4u = C2X(l-V~)D,

with the strain and curvature change measures being given by equations (20) and (211
The boundary conditions at y = ±b, (8), are again automatically satisfied. Of the six

boundary conditions at x = ± a with Qs = O. the second condition in (13) is satisfied
automatically. The first conditions in (13) and (15) become

With the first condition in (15). equation (14) determines C2 in terms of Qp,

e21 1- v~() r D dy = Qp.
" - b

157)

(58)

159)
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and the second condition in (15) is satisfied without further restrictions imposed on the Ci .

Finally, condition (16) becomes

C{(1 +3vM)(1-vM)f/D dy+~vMfJ2 fb ySC dyJ

+C3[2(1-VM ) fb Ddy+f32 fby4CdY]

+ f3c4 fb y3C dy+ f3c s fb y2C dy = 0, (60)
-b -b

With C2 given directly by (59), equations (57), (58) and (60) become three simultaneous
inhomogeneous equations for the determination of C3' c4 and cS . For shells with symmetric
cross sections,

and therewith

1 vMf3Qp S':.-b y4C dy
-:3 (1- V~lf~bD dy S':.-b y2C dy'

(61)

N _! vM f3CQp { ,3 _ S~b y
4
C dY}

xx - 3 (1 - v~)J':.- b D dy} y S':.- b y2 C dy ,

Qx = S':.-b%dY {D-LV;~~J},
M vMDQpy M = DQpx (62)

xy = (1+vM)S~bDdy' xx S':.-/JDdy'

Upon introducing the appropriate specializations for an isotropic homogeneous shell of
constant thickness, these expressions for resultants and couples reduce to those obtained in
[6]. They also show that the only effect of pretwist is, to the degree of approximation of
shallow shell theory and independent of how D and C vary as functions of y, the generation
of the supplementary membrane stress resultant Nxx as first observed in [6] for the case of a
homogeneous isotropic shell of constant thickness,t

With Qp = 0, the boundary conditions (13H16) suggest a semi-inverse solution based
on the assumptions

L N yy vanishes throughout,
2. N X}" Qy and Myy are independent of x,
3, Nxx = xN (y), Qx = xQl(yl, M xv = xT(y),
4. M xx = M O(y)+tx1M 2(y). .
Upon introducing these into the equilibrium equations (2H4), we have

Nxx = -xN~}., Qx = - x(Q~+2f1NX},),

M xx = M o(y) +tx2(My~ - 2Q~ - 2f3Nxyl
(63)

with the four unknowns N XY ' Qy, My}' and Mo to be determined as functions of y by the
remaining differential equations and boundary conditions,

t It can also be verified with the help of (39) that the transverse displacement component w is unaffected by the
pretwist and that there will be tangential displacement components Ux and u,. generated by the presence of the
pretwist.
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Substitution of (63) into the stress strain relations (17) and (18l leads to the following
expressions for the mid-surface strain and curvature change measures

i641

11 - V\lJDX XY = (1- vM)Dxyx = xlQ\, - A;[~,y).

Introduction of (64) into the compatibility equations (SH7) leaves. with a constant of
integration Cl' the following four ordinary differential equations for the determination of the
four unknown functions of Y :

[ Qv-M~')'J' 0
D

'l + V\lC l = .
( - 1'\01)

Equations (65) have the solution

i651

N x )' = - r (1CIVM!Jy3+C2!Jy2-C3Y-C4)Cdv.
-' ~h

/vfy)' = C 1 v\I(1-v\I) rYDd y +cz(I-VI1 )J'''' Ddy+ r
y

Qydy.
o,I-b -h "'-b

1(6)

1671

(6S)

1(9)

where C2-CS are additional constants of integration and where we have again assumed
for simplicity's sake that 1'\/ is a constant. We have also chosen the lower limit of integration
of the various integrals such that M ).),( - b) = N Xy( - b) = O.

With the above results. we then have the following expressions for stress resultants and
couples

;'i yy = n,

N .•" = - j" (lc v u V
3 + c, ur 2

- C V - C JC d v.• 3 1 .\lV _Po 3. 4 .
• - I>

Qx = (1 - v\I )x[c 1(D - I'\lD' y) - czD·].

Q" = 11-VI1){C1[VMDY-O +1'\01) fb DdY] +czD~ -2{J fh N,ydy. 1701

jHxy = - D( 1- vw)X(C t vMY + cz)•

.H yy = C 1VJ/(I-V\l l fY

yDdy+cz(l-v\l) r' Ddy~ rQ\,dy.
-I> .-1> ~'h
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All the boundary conditions (8) for y = ±b and (13H16) for x = ±a will be satisfied
if the constants of integration, C j-C5 are determined by the following set of equations

(71)2PQ.
C

1 = - (l-V~)f~b D dy'

-PC2fb y2Cd.v+C3fb yCdy+c4 r Cdy = --31vMPCI fb y3Cdy. (72)
-b -b ~-b -b

- RC fb r 3 C dv+c fb v2C dv+c fb vC d" = - Q +~v RC fb },4C dr, (73)P 2 • • 3 • • 4 . f • 3 MP 1 •
-b -b -b -b

C2[2(1-vM )f
b

Ddy+ p2 fb JACd.v]-PC3fb y2CdY-PC4fb y2Cdy
-b -b -b -b

= -C1[0 +3vM)(1-vM)fb yD dy+tvMP2fb ySC dyJ. (74)

cs(l-V~)fb Ddy= -CI[VMO-VM)(l+3V,\flfb y2Ddy+~V~P2fb y6CdY]
-b -b-b

-C{(l-VM)O+3VM)f/Ddy+tVMP2 f/SCdY]

+tC3VMPfb y4Cdy+tc4vMPfb )'3Cdy. (75)
-b -b

To indicate the nature ofthe analysis involved in verifying that the boundary conditions
are in fact satisfied, we note, for example. the transformation

- fb fY (tClvMPy3+C2Py2_C3Y-C4)Cdy dy
-b -b

= -[.vf}' (tcIVMPy3+c2py2-C3Y-C4)Cdy]b
-b -b

+ fb (tc 1vMPl+c2Py2- c3y- c4)yCdy
-b

= -bfb (tC1VMPy3+C2Py2_C3Y-C4)Cdy
-b

+ fb (tCIVMPy6+C2Py2_C3Y-C4)yCdy.
-b

(76)

The first integral on the right vanishes because of equation (72). What remains is equal to
Q. by equation (73). As such, the second boundary condition in (13) is satisfied.

For shells with D and C being even functions ofy, equations (72) and (74) give C2 = c4 = O.
Equation (73) becomes

Jb 2 { 2 VMP
2

JD-b y
4
C dY}

C3 y C dy = -Q. 1+-3 -1-,2 Sb D d' ' (77)
-b \M -b }
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and equation (5) gives
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It was observed in [6J that the presence of the pretwist results in a considerable reduction
of the maximum direct normal stress a;>x = Nxx/h (about 23 per cent) for a certain range of
the pretwist parameter ), = f3b 2 /h o where ho is the (uniform) shell thickness. For a homo
geneous isotropic shell of symmetric cross section, we have upon substituting (71) and (771
along with C2 = C4 = 0 into the third equation of (70)

(79)

where ao = QsabW-b y2h dy is the maximum value of Ia;>xI for a flat sheet, and where

(so}

For the cases of rectangular, elliptical, lenticular and diamond shaped cross sections. the
following results are obtained.

h
-§. _.2--- = 1. Xl X 2ho
- 5, - 3'

h J( I-~:); -±-= :i 1 1: 2 = 2,
ho

- 3'

(81 )
h y2

1--' 'XI 1. ;1;2 = 'l.ho b2 '

h 1_1yl'xl = :t ;1;2 = f.
ho b '

On the basis of equation (79), we also observe thefollowing: I. For V.If).2 ::; l/xd3'J: 2 - 11.
the maximum of a;>x is attained at x = ±u and y = ±b with

la~x:
i-I
, ao max

(82)

2. For V M A2 ~ 1/'J: 1(3a 2 -I), the maximum of a;>x is attained at x = ±a and y c=

±(1 + VMA2C(I!1/2/(3vMA2X1C(2)1;2 with

O-;:x I-,
ao :max

2(1 + vMA2ad3/2

(27VMA 2:x I a2) 12 .
(83)

For the case h = ho, these results reduce to what has been obtained in [6J.
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A6cTpaKT-OOOOOLuaIOTcli BbIBe)].eHHble paHblue pe3YJlbTaTbI )].Jlll YKa3aHHblx CJly'laeB KaHOHIt'leCKOH
HarpY1KIt cKpy'leHHblx npJlMoyrOJlbHblX nnaCTItHOK ItJllI nonomx eJlItKOItJ]aJlbHbIX oOOJlO'leK. oona)].alOtllltx
np"MoyronbHblM nOnepe'lHblM Ce'leHlteM. J]nll onpeJ]eJleHltli np01t3BOJlbHbIX 3a)].aHHbIX 113MeHeHItH
nOnepe'lHOH TOiltllltHbl. HaCTOlltllHH MeTOJ] BblBOJ]a OKa3blBaeTCli oonee npocTblM, '1eM MeTO)].
BblpalKeHHblli ypaBHeHHlIMH Mapreppa nilll nOnepe'lHblX 1t3rHOOB H (jlyHKUHI1 31'11. 3TOT MeTO)]. npHMeHlIeT
Hpuecc nonyoopaTHoro petlleHltli K CItCTeMe ypaBHeHltli paBHOBeCltli It COBMeCTHOCTH. )].nll TeOpltH nonorltx
ooo.'10'leK. OC06blil cnY'laH pe3ynbTaToB 3TOH pa60Tbi KacaeTCli 3ana'lll '1ItCTOrO H3rH6a cKpY'leHHoli
-llnaCTlIHKH C 3JlHnTH'IeCKItM 1t3MeHeHlteM TO,'1tllHHbI. Pe3YJlbTaTbi )].Jlll )Toro cny'lall COBna)].aIOT C nocne)].
HHMII pe3ynbTa raMII. nOJlY'leHHbIMIt lY)].bepoM H JPIt(jl(jlHHOM. KO'TOPbIC nonb30BanltCb TpexMepHoli
TeopHeH ynpyrocTI1.


