Ini. J. Solids Strucrures. 1971, Vol 7, pp. 625 to 637. Pergamon Press. Printed in Great Britain

ON STRETCHING, TWISTING, PURE BENDING AND
FLEXURE OF PRETWISTED ELASTIC PLATESY

E. REISSNER

Department of the Aerospace and Mechanical Engineering Sciences,
University of California at San Diego, La Jolla, California

and

F. Y. M. WaN

Department of Mathematics, Massachusetts Institute of Technology. Cambridge, Massachusetts

Abstract—Previously derived results for the mentioned canonical load cases for pretwisted rectangular plates
(or shallow helicoidal shells) of rectanguiar cross section are generalized so as to include arbitrarily prescribed
cross wise thickness variations. The present method of derivation is simpler than the earlier one in terms of
Marguerre’s equations for transverse deflection and Airy stress function, and consists in applying a semi-inverse
solution procedure to the system of equilibrium and compatibility equations of shallow shell theory. A particular
case of the results of this paper concerns the problem of pure bending of a pretwisted plate with elliptical thickness
variation. The results for this case coincide with recent results obtained by Goodier and Griffin through use of
three-dimensional elasticity theory.

INTRODUCTION

SoME years ago, Maunder and one of the present authors [4] considered the problem of
pure bending of pretwisted bars of narrow rectangular cross section as a problem of the
theory of shallow helicoidal shells of uniform thickness. The principal results of this study
concerned the effect of pretwist on the magnitudes of the bending stress and of the center
line curvature, in comparison with the magnitude of these quantities according to “ele-
mentary beam theory™. It was found that for beam sections thin enough to justify the use of
thin-shell theory the effect of pretwist can be significant—20 per cent or more.

Later on the second named author undertook an analogous investigation of the problem
of St. Venant flexure [6], for which the effect of pretwist comes out to be of still greater
significance than for the problem of pure bending.

A recent study by Goodier and Griffin is concerned with the problem of pure bending
of pretwisted beams by means of an expansion procedure in powers of a (small) pretwist
parameter for the equations of three-dimensional elasticity theory [2]. The principal con-
clusion of this work is that for the effect of pretwist to be numerically significant, the cross
section of the beam must be *‘thin”. Goodier and Griffin present results for a beam with
thin elliptical cross section and state that the results for this case are “‘comparable” with
the results of Maunder and Reissner for the rectangular cross section case.

t Preparation of this paper has been supported by the Office of Naval Research. Department of the Navy,
Washington. D.C.
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626 E. RESSNER and F. Y. M. WanN

A study of the analysis by Goodier and Griffin indicates, in conformity with the intuitive
feeling which led to the work in [4], that the effect of pretwist is significant for just that
range of parameter values for which application of the theory of thin shallow shells (or
“pretwisted plates”’) is appropriate. As an analysis of the problem by means of the theory of
shallow helicoidal shells is a great deal simpler than the corresponding analysis by means of
the equations of three-dimensional elasticity theory we extend in what follows the pre-
viously undertaken shallow-shell-theoretical approach for uniform pretwisted plates to the
problems of stretching, twisting, bending and flexure of plates with thickness and material
properties variable in crosswise direction.

Insofar as the derivation of suitable solutions of the equations for shallow helicoidal
shells is concerned. we find it convenient here not to start with the usual two simultaneous
shallow-shell differential equations for the transverse deflection w and an Airy stress
function F as in our earlier work on shells with uniform properties [4, 6], but rather to
subject directly to a semi-inversg procedure of solution the system of equilibrium. com-
patibility and constitutivity differential equations which have recently been stated in [3].

Among the explicit results which are obtained in the following we mention, in particular,
formulas for bending stress and centerline curvature in pretwisted plates with thickness
varying elliptically in crosswise direction. which are identical with the formulas given by
Goodier and Griffin on the basis of their asymptotic expansion procedure for the three-
dimensional problem.

FORMULATION OF THE PROBLEM
We consider a shallow shell with middle surface equation
> = fxy h

for {x] < a and {y| < b, and take the differential equations of shallow shell theory in the
form stated in [5], specialized by the assumption of absent surface forces. moment stress
couples and transverse shear deformations. We then have as equations of equilibrium

Nxt+N,, =0 NogxtN,, =0 (2)
QextQ, ,+BIN +N,,)=0. 13)
M . +M, , =0, My +M,, =0, {4)
where N, = N .. and as equations of compatibility
Hoyx = Hryy = O, K™ Zexy = 0, (3
Ay —Aey T B0, +3,) =0, (6)
= Exyy = Ay Eyex = Eery = Axn (7)

where x,, = x%,,.
We stipulate that the edges v = + b are free of traction. that is, we prescribe the boundary
conditions

v = tbh: No=N,=0Q, +M_ _ =M =0 (8)

vy yv
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In prescribing boundary conditions for the edges x = +a. we assume that they are
acted upon by given forces and moments and we consider separately :

{1) The case of stretching, twisting and pure bending for which the boundary conditions
are

b b
[ N..dy = N, ’. N, dy =0, 9)
J-b Jopo
b
f (Q+My +z N, +z N ydy—[2M_ )", =0 (10)
X = +a o’
b b
j yN  dy = M, f (M, +zN)dy = M, 1y
-b -b
b
f (Q.+M,, 42 N +z N )ydy—[2yM, >, = M,. (12)
-b

(i) The case of flexure due to equal and opposite forces in the directions of y and :.
for which the boundary conditions are

b b
.[ N, . dy = 0. f N, dy = Q,, (13)
~b -b
b
J (Q,+Mx,.‘y+z.an+z,).Nx),) d_v—[2Mxy]b_b = Qp, (14)
X = *+a -
b b
J‘ ¥Ndy = £ 0. f (M +2zN,,)dy = iQpa“ (135)
-b —-b
b
f Qi+ M,y +2 N+z N )—2zN_Jdy—[2yM )0, =0 (16)

J-b
The subscripts s and p indicate sheet and plate action respectively.

The foregoing system of differential equations and boundary conditions is supplemented
by constitutive equations which are here taken in the form

Céery = Ny — VAN, Ce,y = N,y —vwWiN,, a7
ngy = ngx = (1 +V,'\')ny=
M, = D, + vy, ) M, = Dixty, + vy, 18)
R (

M, =M, =(1—-vy)Dx,,.

In these the coefficients C. D, vy and v,, are given functions of y.

STRETCHING, TWISTING AND PURE BENDING

Guided by the form of the boundary conditions (912), we attempt a solution of the
problem through a semi-inverse procedure, assuming at the outset a state of stress with the
properties that

1. N, N,,,Q,. M, vanish throughout..

2. N...Q,.M,, = M, are independent of x,

3. Mxx = MO(.") + XMl(y)-
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With the above assumptions, all but one of the equilibrium equations (2}-{4) are satisfied
automaticalily, leaving only the relation

0., = M, (v)+ M,y (19)

with differentiation with respect to y from now on indicated by dots. Furthermore, the
boundary conditions (8) for y = +b are satisfied automatically.

Introduction of assumptions (1)}~3) into the constitutive equations (17) and (18} reduces
these to the form

Ce = Nyly) £y =~ Vybyx £ = £, = 0, (20)
(1 —v&)Dx,. = My(y)+xM (0, Ky = VygHix y
T 21

(I=vy)Du,, = (1 —vy D, = M_[y).

Introduction of (20) and (21) into the compatibility equations (5) and (7) leaves the

relations .
B [D(?—(ji)} = i
hy= - [N"E(y )], A =0 (24)

and, on the basis of (6),

N T 2BM
[z W7 2BM) _ )
1 Dll=vy)
We now have from (23)
Mo(y) = ¢\ (L =viD, M {v) = c,{1 —vi)D {26)
where ¢, and ¢, are constants of integration, and from (22
‘wx}* = —(Cz | V}[dy’%"‘(:_g)(l—\’M)D. 0_7)
v
Introduction of (27) into (25) gives
¥ sy oy
N = {215{"3}- j J vy dydy dy+%c3y2J+c¢y+cs} C. (28)
. O Y0 VO

Combination of (26)-(28) with (20) and (21) gives expressions for all components
of strains in terms of the given function C, D, vy, and vy. and of the five constants of
integration c¢;.

Corresponding expressions for all non-vanishing stress resultants and couples are given
by (27) and (28), together with

M., = (¢, +cxi{l—vipD. (29
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and

g, = cz[(l w\'i,)D—{(l —vy)D Jy Vg dy} :lwc3{(1—vM)D]' (30)
0

It remains to satisfy the boundary condition (9}H12) for x = +a Of these, one is
satisfied automatically and the remaining five become five simultaneous equations for the
five constants of integration ¢;. In stating these five equations, we shali for simplicity’s
sake assume v, = const. We then have, from (9;

1 £~h b b b
gczﬁvM | y3C dy+c3ﬁf y2Cdy+c, [ yC d,y—i—csf Cdy = N, (31)
) -b V- -k

b

Equation (10} can be shown to be implied by the second relation in both (9) and (11) in con-
junction with (19). The first equation in (11) becomes

1 b b b b
gc,ﬂvMJ‘ ¥+ C dy+c35.{ y3Cdy+ c4J. yv2C dy—f—csf yCdy = M,. (32
-b —b b -b

From the second equation in {11) follow two relations,

v —

b b
¢, -—Vf,)f Ddy=M,, cy(l=vi) { Ddy = —BM,. {33a,b)
b b
Finally, (12) gives

1 4 b
Cz[gﬁvaJ‘ ySC dy+‘1 _VM)(1+3VM)J yD dy]
b b
+c3[ﬂ2f yC dy+2(1 -—vM)f Ddy:‘
-b -b

b b
+ciB ( b_\ﬂc dy+csp f_b.sz dy = M,. (34)

o -

It is apparent that with ¢, and ¢, directly given by (33), equations (31), (32) and (34)
become three simultaneous equations for the deiermination of ¢, ¢, and cs, with coefficients
depending on the section property integrals [* y"Cdy for m=0,1,2.3,4.5 and
{2, y"Ddy, form = 0,1

In terms of these constants, we have M as in (29), while from (27) and (28)

M, = —(c3+ vyl =)D, (35)
N, = (cs+cy+e3By? +3c,fvny®)C (36)
Furthermore, in accordance with (20), (21), (26), (35) and (36),
Hex = €+ 03X, Hyy = = C3—CaVy)s (37
Exx = C;FCoy+CafyE +3cBvay’ (38)

while &, £, &, and x,, are as in(20) and {21}.
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Having (37). (38), (20) and (21), we may readily calculate displacements in accordance
with the formulas

Ugx = Exxs eyt —2Bw = e +6, Upy = By

(39)

T Axxos Xy xy- Y Tyy©

THE SYMMETRIC CROSS SECTION CASE

The foregoing results are simplified considerably for the case that the cross section
property functions C and D are even in y so that

b
[ yDdy = 0. {40}

J—b

b
f (v, ¥,y )Cdy = 0.
~b

We then obtain from (32), with the help of (33b)

M L ovyp? o, v*Cdy
o= IR 1+— - b - ‘41]
4 j’i,,yZCdy[ 31—v4 J°,Ddy

and from (31) and (34)

M, fo,y’Cdy BN
= Al—vy) ", Ddy 2Al=vy)f*,Ddy >, Cdy 42)
3 - s ﬂsz,,,y‘Cdy B (J‘b—byZCdy)Z A
Al=vy) 2, Ddyl (2, y*Cdp(f>, Cdy)
s p*ft, y*C dy ) N o, y*Cdy BM,
= Al—vy) 2, Ddy[ >, Cdy [*,Cdy 21—vy,) ", Ddy (43)
5 Y Y I T |
Al—vy) *, Ddy (f*., y*C dynf>, C dy)
The following quantities are of particular interest:
Axial extension and twist due to applied axial torque M, and axial force N
From equations (37) and (38) follows
8xx(x* ,V) = C5+ C}ﬁ.vz* Xxy(x- ,V) = —C3. 44

where ¢, and c; are given by (43) and (42). As far as the authors know, the results of equation
{44) have not previously been given, except for the case of a rectangular cross section [3],
and for the case N = 0 [1]. In accordance with (20) and (22), we have further that ¢, =
(C/h)e, uniform across the thickness, and o,, = +[6(1 —v,)D/h*]x,, for the two face
surfaces of the shell.

Pure plate bending due to moment M,
Setting M, = 0, M, = 0 and N = 0, we have

Xxx(xv .‘") = Cl (45‘
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there being no effect of pretwist to the degree of approximation implied by shallow shell
theory, as previously found for the case of a rectangular cross section [4].

Pure sheet bending due ro moment M,
Setting M, = O, M, = 0 and N = 0, we have

Ho (X, Y)Y = C,X, el X ¥) = — vl (46)
ExxlX. ¥) = $eaBvp v + 4y (47)

For this problem we are interested, in particular, in the values of the stress ¢2_for y = +b.
given by

AT
ol (x, +b) = ( “) = ig(%czﬁv,ub3+c4b). (48)
y=ztb 1

h }

and in the values of the curvature component k, of the deflected centerline of the shell, given
by (u,—z,w),, for v = 0. Use of equations (39) leads to the relation

Ky = = e (X, 0) 4 Bxit,(x. 0) (49)

in accordance with what has been stated in [4]. From (46) and (47) follows as expression for
k, in terms of the coefficients ¢, and c,

k; = —ci+cBx* (50)

The term quadratic in x is the same as that which follows from elementary beam theory if
account is taken of the rotation of the principal axes of the cross section. The term with ¢,
incorporates the Poisson’s ratio effect of pretwist, which is not given by beam theory and

which has earlier been obtained for the special case of a rectangular cross section [4].
Equations (48) and (50) contain the results which are of particular concern here. We

may write them more explicitly as

s 2 b bz_ 2 ’ZCd’
O-XX(x, ib) = l_pcr’ pa = ‘Mﬁ2 jl_b( b J )} }’ (51)
oo 1—vy 3{°,Ddy
k. 2,2 (b ,ZCd, B2 (P v4C dy
K g B S TCdy B [2,37C Ay (52)
ko (1—vi) [>, Ddy 1—vy 3f°,Ddy
where
+M b3C M
0o = T35 (53)

m? [P yICdy’ 0T TR yCdy

To see the effect of the cross section shape in the problem of pure sheet bending, we
consider, with

Eyh?

D =757 2y
12(1 —vi)

C = Eyh {54)
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the cases of rectangular, elliptical, lenticular and diamond shaped cross sections. The
following results are obtained:

h . 8 vy Eyph? f\'_‘,ENﬂzb“

hy Po =4S T Ephi P =5 TE M

A}_" — // 1 ﬁ _ = ‘wENﬂzbi 0, = E V‘uENﬂzbf

VA L Po =3 T EH2 T3 T ER 3
{33)

h | _ TvyuExB?b? _ Ly ExB?b?

hy b2 Pr = 6 T Eghs Pe= 5 TE 0

h 1 1yl 4 vy Eyph* 8 vyEypib*

— = —_— } = - —, = e

g b Po = 5 TE R =15 T E R

When E,, = E, the results for the case h/hy = | coincide with those given in [4] and the
results for the case h/h, = (1 — y?/b?)* coincide with those derived by Goodier and Griffin
(23

ST. VENANT FLEXURE DUE TO TRANSVERSE END FORCES

Since there is no coupling between the problems of St. Venant flexure due to plate
forces +Q, and sheet forces + Q. we consider the two problemsseparately.

The form of the boundary conditions (13)«{16) with Q, = 0 suggests that we assume at
the outset the same state of stress as that of the section dealing with stretching, twisting and
pure bending, with My(y) = 0. With v,, = const., the previous reduction gives the following
expressions for the nonvanishing stress resultants and couples:

N = ClievuBy? + 3By +cyy+cs),
0, = c;{ll —Vﬁél)D* (1= vy vy DyT } —c3{(1 —vy)D}, {56)
Mx,v = —(CyVyy+ 3}l —vy)D, M, = clxll—vf,)D,

with the strain and curvature change measures being given by equations (20) and (21).

The boundary conditions at y = +b, (8), are again automatically satisfied. Of the six
boundary conditions at x = +a with @, = 0, the second condition in (13) is satisfied
automatically. The first conditions in (13) and (15) become

1 ~b ~h b

b
:szuﬂJ v3C dy+c3,BJ viC d_v+c4f yCdy+c¢; J Cdy =0, 157
Al —-b —b b

~h

b b

b b
v*Cdy+c,f ' v Cdy+e, [‘ yiCdy+cs [
b v -b

J—p v -

1
VB

yCdy =0,  (58)
3 J_ b

With the first condition in (15), equation {14) determines c, in terms of Q,,

Cz(l "Vf,) l Ddy = va ‘59)
v-b
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and the second condition in (15) is satisfied without further restrictions imposed on the ¢;.
Finally, condition (16) becomes

b
C;[U +3vy (1 —vy) "

v ~b

b b
+c3[2(1—vM)f Ddy+ﬁ2j y“Cd_vJ
~b -b

b

b
+ﬁc4j v C dy+,8c5f y2Cdy = 0. (60)
-b

-b

1 b
yD dy+—3-vM52f v C dyJ
-5

With ¢, given directly by (59), equations (57), (58) and (60) become three simultaneous
inhomogeneous equations for the determination of ¢4, ¢, and ¢5. For shells with symmetric
Cross sections,

1 vuBQ, [, y*Cdy

e _ 1 q 61
ey = ¢ “T T3P, Ddy P,y Cdy o
and therewith
N oLl vwBCO, f .  [,yCdy
T 3= [P, Ddy T TP, )PCdyf”
g, 'uDy |
= D— 1S,
Qx J‘b_dey T4+vy
vuDQ,y DO,
M. = ________________E___, xx=m—£_‘_' 62
= (1+vy) ., D dy [L,Ddy -

Upon introducing the appropriate specializations for an isotropic homogeneous shell of
constant thickness, these expressions for resultants and couples reduce to those obtained in
[6]. They also show that the only effect of pretwist is, to the degree of approximation of
shallow shell theory and independent of how D and C vary as functions of y, the generation
of the supplementary membrane stress resultant N, as first observed in [6] for the case of a
homogeneous isotropic shell of constant thickness.t

With @, = 0, the boundary conditions (13)-(16) suggest a semi-inverse solution based
on the assumptions

1. N,, vanishes throughout,

2. N, Q, and M, are independent of x,

3. N =xNy(y), Qe=x0,000, M, =xT{)

4. Mxx = MO(y)'{"%szl(y)

Upon introducing these into the equilibrium equations (2}-{4), we have

Ny = —xN,,, Q.= —x(Q,+2BN ), )
Mxy = x(Qy - M.yy)’ Alxx = Mo(}’) %XZ(M‘;'; - zQy - 2BNxv)

with the four unknowns N, , @,, M, and M, to be determined as functions of y by the
remaining differential equations and boundary conditions.

1 1t can also be verified with the help of (39) that the transverse displacement component w is unaffected by the
pretwist and that there will be tangential displacement components u, and u, generated by the presence of the
pretwist.
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Substitution of (63) into the stress strain relations {17) and (18) leads to the following
expressions for the mid-surface strain and curvature change measures
Cipe = — XN, Epp = = Vybyxe Copy = Cioyy = (1+vg)V .
(1= vi)Dst, = (Mo — vy M, )+ 35X (M — 20, — 28N ).
(1 —vi)Dsty, = (M, — vy Mg)— vy x* (M, = 20" — 28N ).
(I =vy)Dx,, = (1 =vy)Dx, = x(Q, —M,,).

{6d)

Introduction of (64) into the compatibility equations (5}7) leaves, with a constant of
integration ¢, , the following four ordinary differential equations for the determination of the
four unknown functions of y:

M IN " 28(M.— 0.
I:Q,v \/I})i] + vy, = 0. (_ﬂ) +M:O‘

Dil— Var) C Dl — Vi)

Vi LY R Y 0 103

My —vy,! M, -

M:=20. -2 Vx‘: - DIl —v3 . 0 M’ yy _+_‘ ¥y LAY
¥ Qy )BI ¥ ('1 ( ‘w? !: Dll*’\"{,) D(l—\'”)
Equations (65) have the solution
Ny=— ’ 3evyuBy? + Byt —cyy—cy)C dy. {66)
vo-b

Lrvy [ .
Q, = Dl —vy)| cy|vyy— ’ Ddy|+c, | —25 N, dw (671

e v -p
M, = cvyll—vy) f vD dy+c2u_vM)J' Ddy+ | Q,dy. (68)

vo-b ~h v -b

My = vyM,,— DIl = vi)5c, vy v> + v +¢s) 169)

where ¢,~c5 are additional constants of integration and where we have again assumed
for simplicity’s sake that v,, is a constant. We have also chosen the lower limit of integration
of the various integrals such that M, (~bh) = N _(~b) = 0.
With the above results, we then have the following expressions for stress resultants and

couples

N, =0, N = Cxtic vy fr? + e v7 — ey —cy),

.
Ny = — ‘ (3o vagBy? + By — ¢y —ca)C dy.

J-b
Q. = (1 =vyx{c (D —=vyDy)—c, D

.y

N, dy. (70)

Xy
h

v - I

Q, = (1 —vy) {"1["MD.V_“ + V) ‘ D dy:| +c2D% -2
4] P
M., = =Dl —vy)x(c vy +c,)

xy

M

|

y v Y
o = OV b —=vyg) f yDdy+cy(l—vy) ' Ddy+ ‘ Q. dy.
—b J-b Jo-p

M

M, — D1 — "ir)[%ft“’.w."l —x7)+ Ca¥+Cs]

XX
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All the boundary conditions (8) for v = +b and (13(16) for x = +a will be satisfied
if the constants of integration, c¢,~cs are determined by the following set of equations

_ 280,
SR Y O F T 7

b b b 1 [
—Bczf Vv2C d,\‘+C3J' yCdy+c, [ Cdy = wgvMﬁc, f v3C dy. (72}
—b - b b —&

b

b b . 1 b
—fes f PCdytes f YCdyes f YCdy = ~0,+3mabes f WCdy, (73)
-b -~ b —b

-b
b

b b b
62[2(1—VM) f Ddy-+f? f Vi dy]—ﬁca)f y:C dy—Bc, f ¥2C dy
-b b —-b

-b

b

b
= -cl[(l+3\'m)(l—w)f vD dy+%vMﬂ2f
-b

v C dy}. (74)
b

b b b
cot=vi | Ddy=~c1[vM<1——vM>(1+3vM) | yDdy+ i | y"Cdy]

—bh -b —-b

b b
——cl[(l — )l +3\'M)f yD dy+3v B2 f ¥C dy:’
‘-..b -

b
b b

+%c3vM,8J. ¥ dy+%c4vMﬂf y3Cdy. (75)
-b -~ b

To indicate the nature of the analysis involved in verifying that the boundary conditions
are in fact satisfied, we note, for example. the transformation

v -

b b ¥
[ Nty == [ e +ap?—cy-caCdy oy
b -b—b

b

I

- [y f  GeyvaBy? + Byt — 3y —ca)C dy}
—-b

-b

b
+ f GeyvuBy? + 2 y* —cay—cyCdy
b

i

b
b J' (GeyupBy + 2By — cay—co)C dy
~b

b
+ f ey vpBy® +cafy? —c3y—ca)yC dy. (76)
~b

The first integral on the right vanishes because of equation (72). What remains is equal to
0, by equation (73). As such, the second boundary condition in (13) is satisfied.

For shells with D and C being even functions of y, equations(72)and (74) givec, = ¢4 = 0.
Equation (73) becomes

. R2 b 4 )
2 ‘Mﬂ J»by Cd}}‘ (77)

b
,'2 LIS —
cs f_b} Cdy Qs{1+3 T—vi [.Ddy
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and equation {75) gives

~b

cstl—vip) Ddy = 2"MBQ:{
b

o=

1+ 3vy _“b_b y:D d.V+ e J-b_bth dy
I+vy [°,Ddy 9—vi) [*,Ddy

b4 9y, B2 (b 4
~”;'"y2Cdy |4 f‘,,“ Carl (78)
6 [°,yv*Cdy 1—vi) [*,Ddy ||

It was observed in [6] that the presence of the pretwist results in a considerable reduction
of the maximum direct normal stress 2. = N_ /h (about 23 per cent) for a certain range of
the pretwist parameter A = Bb?/h, where h,, is the (uniform) shell thickness. For a homo-
geneous isotropic shell of symmetric cross section, we have upon substituting (71) and (77)
along with ¢, = ¢, = 0 into the third equation of (70)

1—12:;-3)} (79

D
x .,
Tex L XY {1 +vita,
o ab

where o, = Q.ab/{"., y*h dy is the maximum value of |02, for a flat sheet, and where

_hE P, y*Cdy brf, y*Cdy

% = b, y*Cdy - 180
—p )

M =t Ddy’

For the cases of rectangular, elliptical, lenticular and diamond shaped cross sections. the
following results are obtained,

h

PR 7 =3 % =3

h y?

RN IR

(81

h _ ¥ _ -

he b =L R

h v 5

;1;=1——F’ 11={—6, Xy = 3.

On the basis of equation (79), we also observe the following: 1. For v, A* < /o, (32, — |

the maximum of ¢2, is attained at x = +uand y = +b with
1 D

Tiex | = 1+vy A2, (1 —2,) (82)
‘ mAT2y 2 2

i0'0 max -
2. For vy4? > 1/a,(3a,— 1), the maximum of ¢° is attained at x = +a and v =
{1+ vy A2 )2 /By A2 25) 2 with

O'D

xx |

| 201+ vyAla,)??

! ! = Y 2
00 'max (27‘M’t oy az)

{83)

For the case h = hy, these resuits reduce to what has been obtained in [6].
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AGeTpakT—O0060061Ua10TCH BLIBEACHHLIE PAHBINE P23YAbTATHI U1 YKA3AHHBIX CJYy4aeB KaHOHMWYECKOl
HaTpY3KM CKPYMEHHLIX MPSMOYFOJIbHAIX TINACTHHOK MIIH MOJOIHMX €NHKOMAabHbIX 000N04eK, 06nanaromnx
NPAMOYIONbHBIM TONIEPEYHBIM CEYEHHEM. IS ONPEREJIEHHUS NPOU3BOJIbHBIX 3alaHHBIX W3IMEREHHl
nonepeYHod ToNLMHbL, HacToswmii Metoa BBIBOAa OKalbiBaeTcs Oonee NpPOCTbIM, YeM METOA
BLIPAXEHHbIH ypaBHeHusiMu Mapreppa nns nonepednbix U3rndoB U PyHKLWK Ipu. ITOT METON NMPUMEHAET
upLece nonyobpaTHOTO PELIEHUR K CUCTEME YPaBHEHHI PABHOBECHS W COBMECTHOCTH, AJIS TEOPUH MOJIOTHX
oboaouek. Ocobbiit cnyyait pe3ynbTaToB 3TOH paboThi KacaeTcs 3adavu YUCTOTO W3Iruba CKpy4eHHOM
TNACTHAKH C 3IUMTHYECKHM M3MEHEHMEM TONWMHBL. Pe3ynbTaThl Ans 3TOTO CAyYas COBNANANOT C HOCEN-
HHUMH pe3yjabTaraMi, fonyyeHHbIMH Tynbepom W I'puddmHOM, KOTOpbIC MOSAL30BAJNCE TPEXMEPHOMH
TeOpuel yIpyrocTu.



